Indian Statistical Institute, Bangalore B. Math (II) Second Semester 2012-13 Mid-Semester Examination : Statistics (II) Maximum Score 60 Duration

Date: 01-03-2013

Duration: 3 Hours

1. Consider a probability density function (pdf) f, that is, $f \ge 0$ on $(-\infty, \infty)$ and $\int_{-\infty}^{\infty} f(t) dt = 1$. Let $X_1, X_2, \dots, X_n, n \ge 2$, be a random sample from *location-scale family* whose distribution is specified by $f_x(x;\mu,\sigma) = \frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right), \ \mu \in (-\infty,\infty)$ and $\sigma > 0$. Let $\overline{X} = \frac{1}{n}\sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1}\sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2$. Prove that $\left(\frac{X_1 - \overline{X}}{S}, \frac{X_2 - \overline{X}}{S}, \dots, \frac{X_n - \overline{X}}{S}\right)$ is an *ancillary statistic*, that is, its distribution does not depend on the parameter $\theta = (\mu, \sigma)$.

[8]

2. Let X_1, X_2, \dots, X_n be a random sample from the distribution with $pmf/pdf \ f(x|\theta)$ indexed by $\theta \in \Theta$. Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$ and $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Let $T(\mathbf{X})$ be sufficient for θ . Let $e_{\text{MLE}}(\mathbf{X})$, the maximum likelihood estimator for θ , exist. Then show that $e_{\text{MLE}}(\mathbf{X})$ is a function of $T(\mathbf{X})$.

[8]

3. An entrepreneur who deals in washing machines is interested in finding a suitable guarantee period for her product. She is willing to set the guarantee period to 3 years provided $\tau(\theta)$, the probability that a washing machine survives for at least 3 years, is not too small. Suppose the lifetime X of her product is known to have Weibull distribution with parameter $\theta > 0$ with pdf given by $f_{\rm X}(x,\theta) = \frac{1}{\theta} c x^{c-1} e^{-\frac{1}{\theta} x^c} I_{(0,\infty)}(x)$; where c > 0 is a constant; $\theta > 0$. Suppose n such machines were put to survival test and that X_1, X_2, \dots, X_n were their lifetimes. Can you help the entrepreneur to estimate $\tau(\theta)$ based on X_1, X_2, \dots, X_n ? Is your estimator unbiased? Obtain uniformly minimum variance unbiased estimator (UMVUE) for $\tau(\theta)$.

4. For collecting admission forms for a *kindergarten* school, aspirants queue up well in advance. Let 0 signify the time point at which the school commences issuing forms. Then it may be reasonable to assume that the aspirants arrive independently, randomly and uniformly over a period $(-\theta, 0), \theta > 0$ being unknown. The school and an *NGO* are interested, among other things, in having some idea about θ so as to make arrangements to provide basic amenities to the aspirants. Let X_1, X_2, \dots, X_n denote the arrival times of n randomly chosen aspirants who arrive at the school. Obtain a sufficient statistic T for θ based on X_1, X_2, \dots, X_n . Is your T minimal as well? If yes, substantiate. If not, obtain minimal sufficient statistic based on X_1, X_2, \dots, X_n . Substantiate. Is your minimal sufficient statistic complete? Substantiate. Hence or otherwise obtain UMVUE for θ .

$$[(6+2) + (8+2) = 18]$$

- 5. Let X_1, X_2, \dots, X_n be a random sample from the distribution with $pmf/pdf \ f(x|\theta)$ indexed by $\theta \in \Theta$. Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$ and $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Let $T(\mathbf{X})$ be sufficient for θ . Let further the prior distribution specified for θ , be $\pi(\theta)$. Show that the posterior distribution $\pi(\theta|\mathbf{x})$ depends on \mathbf{x} only through $T(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$. [8]
- 6. Let $\pi(\theta) = \frac{1}{\lambda^a \Gamma a} e^{-\frac{\theta}{\lambda}} \theta^{a-1} I_{(0,\infty)}(\theta)$ be the prior distribution specified for θ , the parameter that indexes the Poisson model. Let X_1, X_2, \dots, X_n be a random sample from the Poisson distribution with pmf $f(x|\theta) = \frac{e^{-\theta}\theta^x}{x!}, \theta > 0$. Find Bayes estimator. Recall that the posterior variance is a good indicator of the performance of the Bayes estimator. Determine the sample size n so that the posterior variance is no larger than b. Here $\lambda > 0$, a > 0 and b > 0 are all known.

[8+4=12]